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Abstract

The recently promulgated uncertainty theory of instrumental analyses was used to minimize the relative standard
deviation of measurements. Naphthalene, acenaphthene, pyrene and perylene in HPLC were used as illustrations.
For a Gaussian model peak with a width (S.D., o) of fifteen data points, the optimum integration domain was
about +6 data points (£0.40) around the peak centre on the HPLC baseline examined. Two commonly used
integration modes were examined: horizontal zero line and oblique zero line. The precision was almost the same
for both modes in the HPLC analysis. The signal shape at the limit of detection was also shown for the optimum
integration domain. The error accompanying the use of the uncertainty theory was evaluated using a Monte Carlo
simulation. The practical applicability and limitations of the theory are discussed.

1. Introduction

Validation of analytical systems, quality assur-
ance, GMP (good manufacturing practice) and
GLP (good laboratory practice) often require the
specification of the actual instrumental precision,
that is, the relative standard deviation (R.S.D.)
of measurements of target materials. This
statistical quantity, however, cannot be obtained
without repeated experiments on the same sam-
ples under the same operating conditions. There-
fore, prediction of the actual precision, not a
model precision, is needed and will have a wide
application in analytical chemistry. This theory is
not limited to the above examples, including
validation and GMP, but is also applicable to the
optimization of operating conditions in an analy-
sis. The optimum is defined as the condition that
provides the maximum precision among all the
examined conditions.

* Corresponding author.

In liquid chromatography, the instrumental
uncertainty has been studied for more than two
decades [1-16]. Uncertainty equations take the
following general expression [2,4,8,11,14,15]:

2
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(R.S.D) =?+I (1)

where s, denotes the standard deviation (S.D.)
of the measurement error originating from the
baseline drift, A the signal area of a target
material and / the independent error that corre-
sponds to the sample injection error. In trace
analysis (low values of A), the precision is
subject to baseline noise, sy, and in macro-
analysis (high values of A), the injection error, I,
is the major cause of the total measurement
imprecision. The most difficult to determine in
theory and practice is the baseline error, sp.
Huber et al. [2] determined the measurement
error, sy, from integration output over a period
that approximately corresponds to the integra-
tion time of a target peak. This methodology,
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however, is not effective enough to tackle many
problems of HPLC optimization, because the
optimization based on the precision, 1/sg, re-
quires the values of actual error, sg, for many
different integration times, which vary depend-
ing on the operating conditions (i.e., peak
shape).

Recently, a new theory of uncertainty predic-
tion was advanced [15,16] in which the baseline
drift, often formulated as 1/f noise (f=
frequency), is approximated by the mixture of
well known random processes (the white noise
and Markov process), permitting the baseline
error, sz, to be calculated based on the prob-
ability theory of the time variation in the two
random processes. This theory was immediately
applied to the following typical problems in
analytical chemistry: (1) to determine the op-
timum time domain for the integration over
noisy data in liquid chromatography [17]; (2) to
select the horizontal or oblique zero line above
which the signal intensities are integrated [17];
and (3) to determine the signal shape at the limit
of detection (LOD) for a particular instrument
[18].

The above problems are interesting, but not
easily solved. At issue is which method of entire
area measurement or peak-height measurement
provides more precise results in HPLC [4-
6,14,19-23]. Although this subject has been
disputed over the years, a partial area integra-
tion was shown to give better results than either
method separately [19,22,23]. The concept of the
limit of detection is of fundamental importance
in every discipline of analytical chemistry [21,24—
36], but over the past 50 years, the academic
debate of LOD has been controversial in spec-
troscopy [24]. The IUPAC recommendations for
chromatography [30] cite the minimum detec-
tability that is defined with reference to the
signal and noise of the output of the instrument.

The major obstacle to overcome the above
problems stems from the actual 1/f-type fluctua-
tion of the baseline, which differs from the white
noise model. That is, the baseline noise displays
a strong time dependency. The uncertainty
theory, as mentioned above, has been shown to
be useful for tackling these problems [15,16].

The aim of this work was to study the applicabili-
ty and limitations of the theory in practical
situations. The error of the prediction itself was
also examined. Although the LOD signal and
optimum integration were studied separately
according to the prediction theory [15,16], the
limit of detection for the optimum integration
mode is still of interest.

2. Experimental

Naphthalene, acenaphthene, pyrene and
perylene were of analytical-reagent grade. A
Shimadzu liquid chromatograph was equipped
with a photomultiplier tube. The detection wave-
length was 254 nm. The sampling intervals of an
analogue-to-digital converter were set at 0.2 s
and all the HPLC output was stored on the hard
disk of a personal computer for batch analysis.
The details of the experimental conditions have
been described elsewhere [15].

3. Limit of detection and uncertainty prediction
theory

The well known definition of LOD is the
lowest concentration level or the smallest mea-
surement, x,, that can be determined to be
statistically different from a blank with mean,
Xy, and standard deviation, s, [24-26]:

X, =Xp+ Apsy (2)

where A, denotes an arbitrary value which
should be chosen in accordance with the confi-
dence level desired. Usually in instrumental
analyses, the signal is background subtracted and
the mean, x, can be zero:

X = ApSy (3)

The variation of the blank measurements is
assumed to have a normal distribution. Here, A,
is fixed at 3. This means that the smallest
detectable signal, x,, is 3sy above the average
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baseline (xz = 0), and that the probability that a
measurement equal to or greater than x, would
be the result of a random fluctuation of the blank
signal is 0.13% (the error of the first type, @).

There are many error sources which are re-
flected in sy, €.g., sample preparation error,
instrumental error and error from calibration
lines. Here, we consider the instrumental error
only. Situations often arise in which the sample
concentration is so low that all the error can be
attributed to the baseline noise. If the blank
error, sy, is determined from some appropriate
experiments, it is easy to calculate the LOD
signal according to Eq. 3. In chromatography,
measurements are usually expressed as peak
height or area. The constant, Ay, is dimension-
less and the dimension of the error, sg, should
be equal to that of the signal, x,. This dimen-
sional harmony implies that the blank error
should be the S.D. of the “false” peak height or
area created by the baseline drift.

The S.D. of the false measurements (=sg)
corresponds to the S.D. of the integration results
over a time period of the baseline without the
analyte signals. We first specify the mode of
integration (see Fig. 1). The signal intensities are
always gauged from the zero line and are sum-
med over the domain (k_+ 1, k;). The zero line
is horizontal (broken line) or oblique (solid line),
the statistical superiority of which depends on
the stochastic properties of the baseline (see
below). The horizontal zero line segment is
drawn from the observed intensity at the zero
point, k,. The oblique zero line is drawn be-
tween the observed intensities at the edges of the
region, k, and k.. The peak-height measurement
is an extreme example of the integration with an
integration domain of one point.

The baseline statistics can be predicted by the
uncertainty theory of chromatography. Fig. 2
illustrates the entire scheme of the theoretical
uncertainty prediction. First, the baseline is
Fourier transformed into the power spectrum
which denotes the power (or squared amplitude)
of a wave involved in the baseline as a function
of frequency. The power spectrum, P(k), is
dissolved into the white noise and Markov pro-
cess by using the linear least-squares fitting [15]:

kc+1ka

Integration
Domain

IL |
ko Signal ke
Domain

Fig. 1. Example of optimum integration domain. The signal
is a Gaussian peak with o of 15 data points and entire peak
area, A, of 10089. The noise is an actual HPLC baseline. k&,
denotes cut-off point, k, filter-off point and the integration
domain is k, — k,. k, denotes zero point, the measurement at
which is adopted as the zero signal. &, denotes the end-point.
The oblique solid line is drawn from the measured intensity
at the zero point to the intensity at the end-point. The noise
parameters are w =6.11, #=6.63 and p= 0.977. In this
situation, the optimum integration domain is 11 data points
as shown in the figure (R.S.D. =5.6%).
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where k is the number (frequency) used in the
Fourier transform. The first term on the right-
hand side of Eq. 4 is the theoretical power
spectrum of the Markov process and the second
term is that of the white noise. In this step, three
parameters [S.D. of white noise (W), S.D. of
Markov process (1) and degree of auto-correla-
tion of the Markov process (p)] are estimated.
The S.D. of the false area or height created by
the white noise and Markov process can be

P(k) = 4
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Fig. 2. Procedure for calculating blank S.D.

calculated by the following equation with the
noise parameters (W, m and p) and integration
parameters (k,, k_, k; and k_) [17]:

sg = (k, — k)Ww? (first term)
1 [ 1—plike
t——k—k, —2p ———
(l _ p)2 f c Y 1-— p
1-— 2ks—ke)
+p2- 1p_ pe ]rﬁ * (second term)
1_kaC <1_pk;—kc)2
2, ~ 2
+p 1-p°2 1-p m
(third term)
+a’w? (fourth term)

o L=p™ 20 " ke
1-p° I-p
1_p—2kC ki—ke 1_pkf—kc+1-i
1-— P i=1 P
. pke_kf'-)]}rﬁz (fifth term)
+ A (sixthterm)  (5)

where

ke — k) (k,+ K, + 1
e ©)

The first term of Eq. 5 denotes the error from
the white noise in the integration domain (k; — k_
data points); the second term, the error from the
Markov process in the integration domain (k; —
k. data points); the third term, the influence of
the lag time during k_ data points (if k. =0, this
term is zero); the fourth term, the effect of the
white noise in the oblique zero line; the fifth
term, the effect of the Markov process in the
oblique zero line; and the sixth term, the in-
dependent error (mainly originating from the
injection error). The fourth and fifth terms
should be neglected (=0) for the horizontal
integration.

The auto-correlation coefficient for the white
noise and Markov process can be described (for
the derivation, see Appendix):

o or(- _pz)nzz + 5

VE[r©)?1E[(t + )] LEENFLINPT

(7)

where 7 denotes the lag time and 8(7) the delta
function (=1 if 7=0 and =0 if 7#0). This
equation can be used for determining the noise
parameters, 7, p and w, of the baseline instead
of Eq. 4. The superiority of the Fourier trans-
form and auto-correlation function is discussed
in the parametrization later in this paper.

4. Results

The S.D. of the false measurements of the
baseline (=sg) can be obtained experimentally
from the real baseline. The random location of
the zero point, k,, and integration domain (k, +
1, k;) on the sufficiently long baseline leads to
the statistic s;. The zig-zag lines in Fig. 3 show
that the baseline S.D. of the false height (A) and
area (B) increases with increasing lag time, k,_
(where k. +1=k;), and integration period,
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Fig. 3. Statistics of baseline drift with the oblique zero line.
(A) S.D. of observed values in the case of peak-height
measurement; the abscissa denotes the time to the peak
centre, k; (B) S.D. of baseline measurements in the case of
integration; the abscissa denotes the integration domain (k; —
k. data points); the time to the peak centre is fixed at 60 data
points from the zero point. The periods over which the S.D.
is calculated are chosen by the random sampling from the
baseline drifts observed (see noise in Fig. 8). The average of
100 S.D. values is plotted.

(k. + 1, k;), respectively. It is the smooth lines in
Fig. 3 that are theoretically predicted from the
power spectral density of the instrumental back-
ground as shown in Fig. 2. The injection error, /,
is omitted in this calculation, because this error
is accompanied by the analyte signal (see Eq. 5).
The theoretical prediction of the instrumental
uncertainty coincides with the observed uncer-
tainty.

Before applying the theory to actual HPLC
analysis, we consider the mathematical prop-
erties of the random processes and the depen-
dence of the precision on the integration domain
and the peak width, o, and the degree of auto-
correlation, p, of the baseline (Fig. 4). The
integration with the horizontal zero line (---) and
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Fig. 4. Dependence of precision on peak width in different
baselines p =(A) 0.99 and (B) 0.95. — = horizontal zero
line; --- =oblique zero line. The figures indicate the peak
width, o (S.D. of a Gaussian peak). w =35; m =35; k;=6L;
integration domain = k, — k_ (symmetrical around the peak
centre, k.); Ap=20000. Zero point, k, (=0), and end-
point, k. (=121), are 4¢ away from the peak centre.

oblique line (—) is also taken into account. The
ordinate, R.S.D., means the baseline S.D. di-
vided by the signal area, A [= (si of Eq. 5)"%/
A; 1=0]. Irrespective of the integration modes,
peak width and auto-correlation degree, there is
an R.S.D. minimum at an integration domain for
every line. The optimum time domain which is
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Fig. 5. Baselines with strong auto-correlation (A) (p = 0.99)
and weak auto-correlation (B) (p =0.95). w=5; m =5.
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characterized by the R.S.D. minimum increases
with increasing peak width.

The auto-correlation of the baseline exerts an
important influence on the integration precision.
The amplitudes of low frequencies in the
baseline drift with a high value of p (=0.99 in
Fig. 4A) are larger than those with a low value of
p (=095 in Fig. 4B). Therefore, the time
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variation of the former baseline appears to be
more undulating than the latter baseline. This
difference in time space is illustrated in Fig. 5.
The low frequencies are known to be harmful for
the precise analysis and the R.S.D. lines for
p=0.99 in Fig. 4 are higher than the corre-
sponding lines for p =0.95 (note that the scales
of the ordinates are different). The oblique line
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Fig. 6. Dependence of precision on analyte concentration for integration in entire peak region and optimum domain (horizontal
zero line). Symbols denote the observed R.S.D.: O =regular integration; O = optimum integration; * = result from the Monte
Carlo simulation with the real peak (see Fig. 5 in Ref. [15]) and real baseline shown in Fig. 8. The solid line on the right-side are
obtained from the integration over the entire peak region and those in the left-hand side from the optimum integration (Eq. 5).
The dotted lines denote LOD. Analyte: (A) for naphthalene (A, = 14540000; o =12.3; 50 wm/ml); (B) for acenaphthene
(A;=5465000; o =14.4; 50 pum/ml); (C) pyrene (A, =15640000; o =16.6; 20 um/ml); (D) perylene (A= 17480000;
o =22.9; 30 wg/ml). The experimental conditions are described in Ref. [15]. The entire region integration: k =k, =0;
k. =k, =(A) 120, (B) 120, (C) 160 or (D) 200. Optimum integration: k_ = (A) 38, (B) 43, (C) 55 or (D) 81; k.= (A) 120, (B)
120, (C) 140 or (D) 200; k, — k. =(A) 9, (B) 11, (C) 15 or (D) 25 (symmetrical around the maximum peak position, k). The
optimum integration domain is calculated from the assumption of Gaussian peak shape. L.O.D.: A = (A) 2575, (B) 3061, (C)
3630 or (D) 5058 (from Eq. 5).
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integration (---) is effective when the auto-corre-
lation of the baseline is strong (p =0.99), but
the horizontal line integration (—) is useful for
the baseline with high vibration (p =0.95). The
R.S.D. for the entire area integration (*+4¢) is
almost twice that for the optimum integration for
p = 0.99. The experimental verification for these
results has been given elsewhere [18].

We consider the LOD signal for the optimum
integration. If the blank S.D. is equal to the S.D.
of analyte measurements at a low concentration
range [1,2], the background-subtracted signal,
x., of 33.3% R.S.D. corresponds to the LOD
signal (Ap =3):
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Figs. 6 and 7 show the precision—concentration
relationship for naphthalene, acenaphthene,
pyrene and perylene for the integration with the
horizontal line and oblique line, respectively, in
HPLC. The dotted lines indicate the LOD sig-
nals. The integration results for the optimum
domain (O) and entire peak area ((J) are also
shown in Figs. 6 and 7. The solid lines are drawn
according to the uncertainty theory (Eq. 5).
Under the HPLC conditions examined, no sub-
stantial difference between the integration of the
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Fig. 7. Dependence of precision on analyte concentration for integration in entire peak region and optimum domain (oblique
zero line). Conditions as in Fig. 7 except for the following: optimum integration: k, — k.= (A) 9, (B) 11, (C) 13 or (D) 21. LOD:
A1 =(A) 2618, (B) 3118, (C) 3759 or (D) 5412.
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horizontal and oblique lines can be found. In
addition, a capillary electrophoresis apparatus
(Photal, Otsuka Electronics) shows the
superiority of the horizontal integration because
the baseline is dominated by the white noise (not
shown).

The experimental results (O and () corre-
spond well with the theoretical curves in Figs. 6
and 7. However, the same experimental strategy
is not effective for the LOD concentration,
which should be characterized by 33% R.S.D.
Statistics indicate that a large scattering of the
R.S.D. values will be observed (see below). The
95% confidence interval for even 100 replicate
experiments is still large around 33% R.S.D.
(29.3-38.8). Therefore, Monte Carlo simulation
with the real baseline and peak shape was
adopted to prove the uncertainty theory. The
peak with the amplitude which is predicted to
show 33% R.S.D. in theory is randomly placed
on the long baseline and the observed R.S.D. is
plotted against the theoretical concentration of
33% R.S.D. as shown in Figs. 6 and 7 (*). The
computer experiments led to the conclusion that
the theoretical prediction of LOD signal is reli-
able.

As mentioned above, the LOD signal can be
calculated directly from Eq. 5. For example, if
the zero point is 60 data points away from the
peak maximum and if the integration domain
covers 40 data points around the peak maximum,
the blank S.D., s, is ca. 1000 (see the smooth
line in Fig. 3B) and then the LOD peak area, x, ,
over the integration domain is ca. 3000 (A, =3;
see Eq. 3). Note that the blank S.D. is of areal
dimensions in this situation. The LOD signals
superimposed over the actual HPLC baseline are
illustrated in Fig. 8.

Fig. 9 shows the parametrization error for the
baseline drifts and the error of the false area
calculated based on these parameters. The noise
parameters can be obtained from the power
spectrum of the observed baseline as shown in
Fig. 2. Of course, some equivocality is accom-
panied by the parameters. Fig. 9 shows the
distributions of the noise parameters (A, m; B,
p; C, w; D, s,) determined from 1000 computer-
generated baselines with ;1 =35, p =0.95, w = 10
and s = 305. Each baseline is made up of 2048

zm_,__._; N —
Signal
0 /L
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2OO+WMWW“'WW
4001 Lop

Intensity
8

8007 10p
-1000+
-1200 T T T
0 30 60 90
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Fig. 8. Noise and signal at the limit of detection. Signal:
Gaussian peak with o of 3 s (15 data points), peak centre of
70 s and peak area of 3363; the zero point and end point are
40 away from the peak centre. Noise: that observed in an
HPLC apparatus. Upper and lower LODs are for optimum
integration domain and for the entire area integration,
respectively (R.S.D. =33.3%). Upper LOD: the integration
period is =1/30 (11 data points) around the peak centre; the
end-point is 121 from the zero point; the signal is the same as
the top line. Lower LOD: the integration domain is *4c
(121 data points) around the peak centre; peak area = 6823.

data points and 1023 frequencies are evaluated in
the power spectrum. The mean and standard
deviation of the parameters are listed in Table 1.
The relative standard deviations of these param-
eter distributions are 20% for m, 2% for p, 13%
for w and 10% for sz. Although the noise
parameters vary widely, the scatter of the false
area, Sy, is not so large. This is because of the
strong correlation of the parameters determined
by the simplex least squares of the power spectra
(see Table 1).

Let us consider the experimental determina-
tion of the LOD signal. The concentration which
would provide 33% R.S.D. of measurements
should be searched for. Statistics clearly illus-
trates this difficulty. If the mean of 100 and S.D.



Y. Hayashi et al. | J. Chromatogr. A 722 (1996) 157-167

165

120 . %0 . . -
. sof — B 4
100t
T0H —
8o M 60} ] ™
2 ] 50 ]
3 e 3
© © g0t
a0t ot
20t 1
200
H j H ‘
N o Y e N 1Y 0 . 0 = . R
(] 1 2 ) 4 5 6 7 8 9 10 0.88 0.9 0.92 0.94 0.96 ‘0.98 1
m value p value
140 T 2 T 150 T T Senemeny
120f ]
-
100f ]
100F
B b ol P
» 2
§ g
0+
sor
a0t
1 I—] | H H
o,——.m . . ﬂf—]f—u__ — I e T el A=
6 8 10 12 14 16 18 100 150 200 250 300 350 400

SD of false area, s,

Fig. 9. Distributions of (A-C) parametrization and (D) S.D. of false area. 1000 replicate baselines are used for the
parametrization statistics. 1000 sets of parameters (W, 1 and p) are obtained from each baseline generated by the computer and
the S.D. of the false area is obtained from each set of the parameters. k.= 1; k; = 30. The horizontal zero line is used for the

integration.

of 33.3 are obtained from 10 replicate experi-
ments (n = 10), the 95% confidence interval of
the population S.D. ranges widely from 22.9 to
69.1. The 95% confidence interval for 100 repli-
cate experiments is still large (29.3-38.8). In the
uncertainty theory of this paper, ten replicates of
the baselines give the 95% confidence interval
ranging from 31 to 35 on the same scale. The
95% confidence interval for ten replicates is
calculated as 0.333 +1.96 x 0.333 x 0.10/V10.
This result clearly demonstrates that the uncer-

tainty theory can estimate the LOD signal more
reliably.

The auto-correlation of the baseline can also
be used for the parameterization of the
baselines. The auto-correlation for the mixed
process of the white noise and Markov process is
given in Eq. 7. Table 1 also includes the results
of the parametrization using the auto-correla-
tion. The Monte Carlo simulation is carried out
in the same way as that for the power spectrum
(2048 data points of each baseline, but the lag
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Table 1
Parametrization by power spectrum and auto-correlation

Correlation coefficient of power spectrum Parameter Power spectrum Auto-correlation
m 1 Mean m 5.2724 5.546
p —0.88 1 SD.m 1.0304 1.2767
w -0.94 0.78 1
m p w Mean p 0.9424 0.9406
S.D.p 0.0182 0.0165
Correlation coefficient of auto-correlation Mean w 9.8699 9.8571
SD.w 1.3157 2.9312
m 1
p -0.45 1 Mean false area 299.4225 312.6429
w 0.2 0.51 1 S.D. false area 31.158 66.0217
m p w

2048 points of time variation data are used for this simulation. The long, gentle slope of the mixed random process is removed by
the linear least squares for each set of 2048 data points. For the parametrization, 1024 points are available for the power spectrum

and the lag time of the auto-correlation ranges from zero to 203.

time ranges from 0 to 203). Unfortunately, the
parametrization by the auto-correlation displays
more error. The reason may be the weak corre-
lation between the noise parameters in the
parameterization (see Table 1).

5. Discussion

This paper has demonstrated how to calculate
the S.D. of false area (or height) created by the
baseline which depends on the peak width (or
the integration domain). Eq. 5 includes all the
fundamental concepts of this uncertainty predic-
tion. All the requirements for the prediction are
the actual baseline, smooth peak shape and
injection error in HPLC. However, some signifi-
cant problems should be solved before the uncer-
tainty theory is applied to HPLC optimization.

First, the quantitative relationship between the
precision and peak separation should be eluci-
dated. Peak separation is of vital importance in
separation science and the precision has univer-
sal importance in every discipline of analytical
chemistry. The optimization should be per-
formed with close reference to the above rela-
tionship. An information—theoretical approach
to optimiation will be useful for this purpose.

Further, the errors originating from the other
steps in an entire chemical analysis such as
sample preparation and calibration graph should
also be taken into account. Coupled with the
quantitative structure—retention relationship, the
uncertainty prediction would cover the entire
analysis from molecular structure to precision.

Appendix

If the same symbols are used in Ref. [15], the
variation at time ¢ and ¢+ 7 can be given as

r)=p"  'm(1)+p 'm)+ - +pm(t—1)
+ m(t) + w(t) (A1)

r(t + T) - pt+7—lm(1) +p1+7—2m(2) 4o

+p me -1+ +pm@t+7-1)
+m+1)+wit+71) (A2)

The variances of these variations are described
as

1_ 2t B
E[r(t)}] :1—_%- A+ (A3)
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_pz(r+-r)
———m W’ (A4)
I-p

The covariance of r(¢) and r(¢ + 7) takes the form

E[r(t +7)’]=

E[rrt+7)]=p (p> > +p* "+ - +p + )

1_ 2
=p -1—"2—-n~z +8(r)w>  (AS)
—p

If ¢t is large (i.e., the stationary phase), the
variances and covariance of the random variables
at time ¢ and ¢+ 7 are reduced to the simple
forms

E[r@)’]=E[r¢t +1)’]= Smi+ Wt (A6)

1-p

E[r()rt+1)]=p"- 1 _1p2 m+ 8w (A7)

Note that p <1. From Eqs. A6 and A7, Eq. 7
can be derived.
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